SMILE

Stochastic Models for the Inference of Life Evolution

SMILE | Stochastic Models for the Inference of Life Evolution | Collège de France

Presentation

SMILE is an interdisciplinary research group gathering mathematicians, bio-informaticians and biologists.
SMILE is affiliated to the Institut de Biologie de l'ENS, in Paris.
SMILE is hosted within the CIRB (Center for Interdisciplinary Research in Biology) at Collège de France.
SMILE is supported by Collège de France and CNRS.
Visit also our homepage at CIRB.

Directions

SMILE is hosted at Collège de France in the Latin Quarter of Paris. To reach us, go to 11 place Marcelin Berthelot (stations Luxembourg or Saint-Michel on RER B).
Our working spaces are rooms 107, 121 and 122 on first floor of building B1 (ask us for the code). Building B1 is facing you upon exiting the traversing hall behind Champollion's statue.

Contact

You can reach us by email (amaury.lambert - at - college-de-france.fr) ; (guillaume.achaz - at - college-de-france.fr) or (smile - at - listes.upmc.fr).

Light on

Publication

2016

Fidelity of parent-offspring transmission and the evolution of social behavior in structured populations

The theoretical investigation of how spatial structure affects the evolution of social behavior has mostly been done under the assumption that parent-offspring strategy transmission is perfect, ie, for genetically transmitted traits, that mutation is very weak or absent. Here, we investigate the evolution of social behavior in structured populations under arbitrary mutation probabilities. We consider populations of fixed size N, structured such that in the absence of selection, all individuals have the same probability of reproducing or dying (neutral reproductive values are the all same). Two types of individuals, A and B, corresponding to two types of social behavior, are competiting; the fidelity of strategy transmission from parent to offspring is tuned by a parameter μ. Social interactions have a direct effect on individual fecundities. Under the assumption of small phenotypic differences (weak selection), we provide a formula for the expected frequency of type A individuals in the population, and deduce conditions for the long-term success of one strategy against another. We then illustrate this result with three common life-cycles (Wright-Fisher, Moran Birth-Death and Moran Death-Birth), and specific population structures (graph-structured populations). Qualitatively, we find that some life-cycles (Moran Birth-Death, Wright-Fisher) prevent the evolution of altruistic behavior, confirming previous results obtained with perfect strategy transmission. We also show that computing the expected frequency of altruists on a regular graph may require knowing more than just the graph{\textquoteright}s size and degree.

Publication

2018

The genomic view of diversification

Evolutionary relationships between species are traditionally represented in the form of a tree, called the species tree. The reconstruction of the species tree from molecular data is hindered by frequent conflicts between gene genealogies. A standard way of dealing with this issue is to postulate the existence of a unique species tree where disagreements between gene trees are explained by incomplete lineage sorting (ILS) due to random coalescences of gene lineages inside the edges of the species tree. This paradigm, known as the multi-species coalescent (MSC), is constantly violated by the ubiquitous presence of gene flow revealed by empirical studies, leading to topological incongruences of gene trees that cannot be explained by ILS alone. Here we argue that this paradigm should be revised in favor of a vision acknowledging the importance of gene flow and where gene histories shape the species tree rather than the opposite. We propose a new, plastic framework for modeling the joint evolution of gene and species lineages relaxing the hierarchy between the species tree and gene trees. As an illustration, we implement this framework in a mathematical model called the genomic diversification (GD) model based on coalescent theory, with four parameters tuning replication, genetic differentiation, gene flow and reproductive isolation. We use it to evaluate the amount of gene flow in two empirical data-sets. We find that in these data-sets, gene tree distributions are better explained by the best fitting GD model than by the best fitting MSC model. This work should pave the way for approaches of diversification using the richer signal contained in genomic evolutionary histories rather than in the mere species tree.

Upcoming seminars

Resources

Planning des salles du Collège de France.
Intranet du Collège de France.