SMILE

Stochastic Models for the Inference of Life Evolution

SMILE | Stochastic Models for the Inference of Life Evolution | Collège de France

Presentation

SMILE is an interdisciplinary research group gathering mathematicians, bio-informaticians and biologists.
SMILE is affiliated to the Institut de Biologie de l'ENS, in Paris.
SMILE is hosted within the CIRB (Center for Interdisciplinary Research in Biology) at Collège de France.
SMILE is supported by Collège de France and CNRS.
Visit also our homepage at CIRB.

Directions

SMILE is hosted at Collège de France in the Latin Quarter of Paris. To reach us, go to 11 place Marcelin Berthelot (stations Luxembourg or Saint-Michel on RER B).
Our working spaces are rooms 107, 121 and 122 on first floor of building B1 (ask us for the code). Building B1 is facing you upon exiting the traversing hall behind Champollion's statue.

Contact

You can reach us by email (amaury.lambert - at - college-de-france.fr) ; (guillaume.achaz - at - college-de-france.fr) or (smile - at - listes.upmc.fr).

Light on

Publication

2016

Testing for Independence between Evolutionary Processes

Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths and weaknesses of themethodare assessed via simulations; we then apply the method to explore the loss of cell motility in intracellular pathogens.

Publication

2015

How Ecology and Landscape Dynamics Shape Phylogenetic Trees

Whether biotic or abiotic factors are the dominant drivers of clade diversification is a long-standing question in evolutionary biology. The ubiquitous patterns of phylogenetic imbalance and branching slowdown have been taken as supporting the role of ecological niche filling and spatial heterogeneity in ecological features, and thus of biotic processes, in diversification. However, a proper theoretical assessment of the relative roles of biotic and abiotic factors in macroevolution requires models that integrate both types of factors, and such models have been lacking. In this study, we use an individual-based model to investigate the temporal patterns of diversification driven by ecological speciation in a stochastically fluctuating geographic landscape. The model generates phylogenies whose shape evolves as the clade ages. Stabilization of tree shape often occurs after ecological saturation, revealing species turnover caused by competition and demographic stochasticity. In the initial phase of diversification (allopatric radiation into an empty landscape), trees tend to be unbalanced and branching slows down. As diversification proceeds further due to landscape dynamics, balance and branching tempo may increase and become positive. Three main conclusions follow. First, the phylogenies of ecologically saturated clades do not always exhibit branching slowdown. Branching slowdown requires that competition be wide or heterogeneous across the landscape, or that the characteristics of landscape dynamics vary geographically. Conversely, branching acceleration is predicted under narrow competition or frequent local catastrophes. Second, ecological heterogeneity does not necessarily cause phylogenies to be unbalanced--short time in geographical isolation or frequent local catastrophes may lead to balanced trees despite spatial heterogeneity. Conversely, unbalanced trees can emerge without spatial heterogeneity, notably if competition is wide. Third, short isolation time causes a radically different and quite robust pattern of phylogenies that are balanced and yet exhibit branching slowdown. In conclusion, biotic factors have a strong and diverse influence on the shape of phylogenies of ecologically saturating clades and create the evolutionary template in which branching slowdown and tree imbalance may occur. However, the contingency of landscape dynamics and resource distribution can cause wide variation in branching tempo and tree balance. Finally, considerable variation in tree shape among simulation replicates calls for caution when interpreting variation in the shape of real phylogenies.

Publication

2017

The genealogical decomposition of a matrix population model with applications to the aggregation of stages

Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population models to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units.

Upcoming seminars

Resources

Planning des salles du Collège de France.
Intranet du Collège de France.